lunes, 30 de abril de 2012

¿Qué son los números Racionales?


    Los números racionales, se designan con la letra Q (por “quotient, o cociente, en inglés). Un número se llama racional si es el cociente de dos números enteros: a/b, con b≠0. Es decir, se puede expresar como una razón (de allí su nombre).
    Los números racionales:

  • forman un conjunto de infinitos elementos
  • no tienen primer ni último elemento
Entre dos números racionales existen infinitos racionales, por eso decimos que es un conjunto denso. Como consecuencia de esto, no puede hablarse de números racionales consecutivos en una ordenación creciente o decreciente.
    Los números fraccionarios positivos se inventaron como respuesta a la necesidad de expresar partes de la unidad, en especial cuando se realizaban mediciones. Por eso tuvieron un desarrollo apreciablemente anterior al de los números enteros. Aparecen ya en las tablillas babilónicas  (2000 – 1800 a.C.) y en los papiros egipcios (1650 a.C.).
    Los números fraccionarios negativos fueron introducidos en Italia durante el Renacimiento.
    Los números racionales son los que se conocen como “las fracciones”, con numerador y denominador números enteros. Por ejemplo, (-7/2), (15/8), (2/3), 3, son números racionales. Es interesante notar, que cualquier número entero es también un número racional, porque todo número entero a se puede escribir como una fracción o como cociente de el mismo por 1. O sea a=a/1
     Todo número racional tiene un desarrollo decimal (que se obtiene, justamente, haciendo el cociente entre los dos números enteros). Lo que sabemos de los números racionales es que al hacer el cociente, el desarrollo decimal es, o bien finito (como en el caso de 1/2 = 0,5 por que después vendrían solo ceros a la derecha de la coma), o bien es periódico como 1/3 = 0,33333…, en donde se repite un número (en este caso el 3), o podría ser un grupo de números (que se llama período), como en el caso de 102/99 = 1,0303030…en donde el período es 30.
     Es más podemos decir que todo número racional tiene un desarrollo racional finito o periódico. Y al revés: dado un número decimal periódico finito o periódico cualquiera, eso corresponde a un número racional.
    Hay números que no son racionales. Son números que tienen un desarrollo decimal pero que se sabe que no son racionales. El ejemplo más famoso es π = 3,14159…El número √2 = 1,41421356…La particularidad que tienen todos estos números es que tienen un desarrollo decimal que no termina nunca (en el sentido de que no aparecen ceros a la derecha de la coma a partir de ningún momento) y tampoco son periódicos (en el sentido en que no hay un lugar del desarrollo a partir del cual se repita indefinidamente un grupo de números). Es decir: las cifras de cada número son imposibles de predecir en función de las anteriores. No siguen ningún patrón. Estos números se llaman irracionales. Juntos los racionales y los irracionales componen el conjunto de los números reales, que son todos los números que necesitamos para medir en nuestra vida cotidiana.



No hay comentarios:

Publicar un comentario en la entrada